Community, state and market:

understanding historical water governance evolution in Central Asia

Iroda Amirova, Martin Petrick, Nodir Djanibekov

irodaamirova@gmail.com

Historical Central Asian water governance

Pre-colonial – Tsarist – Soviet periods

6

Source: "HASAHAR". Irrigation of Uzbekistan cited in Abdullaev & Rakhmatullaev, 2015

Pre-colonial:

Election-sanctioning mechanism

Elections:

Tier 1: Community reps → Mirab-bashi of central authority

Tier 2: Several sublocalities → 1 Ketman → max 4 Aksakal (ketman repr) → Mirab &

Assistant

Remuneration:

• Kipsen (kapsan) - it depended on the satisfaction level of farmers concerning the irrigation service quality they received

IV. Quaternary/Field Canal

Tsarist time: transformations in water governance

- Election sanctioning (de jure)
- Appointment & fixed wage (de facto) Kaufman's initiative
- Initial large infrastructure (cotton goal)

Correlated with:

- Physical deterioration of irrigation system
- Increased corruption

Soviet time: transformations in water governance

- Full abolishment of self-governance
 - replacement with a water bureaucracy
- Kolkhozes, sovkhozes
- Diffusion of- large scale irrigation infrastructure
- Omnipresent low water use efficiency
- Aral Sea's irreversible transformation into Aralkum Desert started

Today: depleted land and water endowment

Inherited from previous regime

- Fundamental water problem of Central Asia:
 - mismanagement and bad governance associated with pseudo self-governance

Research questions

- Our study goes beyond the established historical insights
- We use game theory
- Model the evolution path of water governance

1. How likely it is that current water management could return to ancient principles of election-sanctioning?

2. Could private property in water management improve irrigation management efficiency today?

Evolutionary game theory as an analytic narrative

- Tool through which we reiterate the historical events
 - mechanisms at play
 - game changers
 - drifts from one equilibrium into another
- Model water users' interaction in an evolutionary Hawk-Dove game
 - three alternative strategies to share a common good
- Evolutionary game theory
 - a priori programmed players, some strategies earn more than others
 - Successful strategies with higher payoffs are replicated more than unsuccessful ones, hence successful strategies proliferate in the population

Guide to modelling steps

- The **hawk-dove game** (grab or share) as an analytical narrative of resource conflict. Equilibria involve ongoing wasteful fighting.
- Multiplayer game: equilibrium of both grabbers & sharers
- Introducing a third strategy: <u>punishment</u> by community members
- Evolutionary game: many players, many rounds, updating based on replicator dynamics, identifies Evolutionary Stable Strategies (ESS) that allow to trace governance dynamics over time.
- Historical undermining of punishment leads to evolutionary return to fighting ("Kaufmann drift").
- Introducing a fourth strategy: <u>property rights</u> ("Krivoshein game"), move to punishment or burgeois/share.

Hawk-Dove-Game: Payoff table in words

	Hawk (Grabber)	Dove (Sharer)
Hawk (Grabber)	Both: fight, incur cost, 50/50 chance to win	Hawk gets all resource
Dove (Sharer)	Hawk gets all resource	Share equally

Solutions

When fighting is not so costly:

- [Hawk-Hawk] : dominant strategy
- Everyone always fights

When fighting is costly

- [Dove-Hawk]: Nash equilibrium
- [Hawk-Dove]: Nash equilibrium

Hawk-Dove-Game: Payoff table

Player 2

		Hawk (Grabber)	Dove (Sharer)
Player 1	Hawk (Grabber)	(v-c)/2; (v-c)/2	v; 0
	Dove (Sharer)	0; v	v/2; <mark>v/2</mark>

- Two sides are competing over common water resource of value =v
- Each chooses to be a "hawk" or "dove" simultaneously
- Fighting cost = c

Waste & institutions to overcome

- The "waste" arises due to the fighting of the Hawks
 - In water use interaction: waste arises from problems as water stealing, and free riding during maintenance of the infrastructure
- Institutions which may overcome this waste and lead to sharing - is what we are interested in
- 1. Punishing (civic) behavior
- 2. Private property Krivoshein game

Grab-Share-Punish-Game: Payoff Table in words

	Grab	Share	Punish
Grab	Both: fight, incur cost, 50/50 chance to win		
Share	Nothing; All resource	Share equally	
Punisher	*wins: punishing water users share the water among themselves; *lose: the punisher bears the cost of fight with the hawk	Share equally	Share equally

(Bowles, 2004, 382)

Grab-Share-Punish-Game: Payoff Table

	Grab	Share	Punisher
Grab	(v-c)/2; (v-c)/2	v; 0	$(1-\beta)v-\beta c; v/n-(1-\beta)c$
Share	0; v	v/2; v/2	v/2; v/2
Punisher	$v/n-(1-\beta)c$; $(1-\beta)v-\beta c$	v/2; v/2	v/2; v/2

 β Share of punishers in population.

Grab-Share-Punisher-Game

- There are two equilibria: Grab-Grab; Punish-Punish
- Pre-Tsarist water governance resembled: Punish-Punish equilibrium
 - Election sanctioning mechanism: which we consider as a punishing strategy in the game
 - Mahalla & waqf further nurtured the punishing & sharing behavior

Distribution of strategies in a multi-player game

Bowles 2004

Within groups dynamics multi-player

Effects of undermining the punishment mechanism

Krivoshein's privatization goal

- Privatization law as a solution to corrupted traditional Central Asian water governance
- It would legalize the water trade that was already taking place in Fergana valley
- But Tsarist Russia dismantled shortly after this law proposal was submitted to the Duma
- Hard to guess the possible consequence
- But we can imagine one possible consequence with stylized games

Krivoshein Game

- Adopt a new strategy: "Bourgeois" strategy to Grab-Share-Punish game
- Bourgeois peasant:
 - if he owns the (water) resource, then he will behave like a Hawk
 - If he is not the owner of the resource, he would share the water resource with the interacting party (behave like Dove)
- We assume:
- ½ time the Bourgeois player is the resource possessor
 - hence claims for it
- ½ of the time he is a non-possessing Bourgeois
 - hence does not claim the water

Krivoshein Game: Payoff Table

	Bourgeois	Share	Punish (Civic)
Bourgeois	v/2; v/2	3v/4; v/4	$\frac{1}{2}[(1-\beta)v-\beta c];$
			$\frac{1}{2}[v/n-(1-\beta)c]$
Share	v/4; $3v/4$	v/2; v/2	v/2; v/2
Punish (Civic)	$\frac{1}{2}[v/n-(1-\beta)c];$	v/2; v/2	v/2; v/2
	$\frac{1}{2}[(1-\beta)v-\beta c]$		

- The stationary and stable states (solutions) are:
- 1. All-Civic (Punisher) group of water users (Max Aggregate payoff &egalitarian)
- 2. Combinations of Bourgeois with Doves (Max Aggregate payoff & non-egalitarian)

Relevance for today

- Hobbesian equilibrium with non-civic players is still prevailing in Central Asia
- Reformers do not displace it easily, due to its positive feedback mechanism
- There are two ways out:
- 1. Private property regime in irrigation water
 - All merits of the private property
 - Unobservable incomplete information, a weak institutional setting, prone to corruption, complicate private property regime enforcement over water
- 2. Restoring the election-sanctioning element to the WUAs
 - Nourish civic-mindedness
 - Handle the market failures associated with incomplete contracting and high transaction costs

Thank you

Research highlights

Ancient water governance was more efficient than Tsarist and Soviet periods

The traditional arrangement linked irrigation duties with benefits

The de-facto appointing irrigation staff corrupted the traditional water governance

Community & Privatization are still viable solution for the issues in irrigation governance today