

Acknowledgements

Additional Project Team

- M-Vector
 - · especially Aida Beishekeeva, Nail Khaibulin
- Rahat Sabyrbekov, American University of Central Asia
- Ajay Pillarisetti, University of California, Berkeley
- UNICEF Kyrgyzstan staff
 - · especially Nazgul Sharshenova, Tomoya Sonoda

Outdoor Air Quality Data

- · Asian Development Bank
 - · Jules Hugot, Kristian Rosbach
- KyrgyzHydromet
 - · Begaim Alipova, Lyudmila Nyshanbaeva
- · Clarity Movement Co.
 - Levi Stanton, Sean Wihera

Acknowledgements

Additional Project Team

- M-Vector
 - especially Aida Beishekeeva, Nail Khaibulin
- Rahat Sabyrbekov, American University of Central Asia
- · Ajay Pillarisetti, University of California, Berkeley
- UNICEF Kyrgyzstan staff
 - · especially Nazgul Sharshenova, Tomoya Sonoda

Outdoor Air Quality Data

- Asian Development Bank
 - · Jules Hugot, Kristian Rosbach
- KyrgyzHydromet
 - Begaim Alipova, Lyudmila Nyshanbaeva
- · Clarity Movement Co.
 - · Levi Stanton, Sean Wihera

Objectives and Approach

- Examine the health and social impacts of fine particulate matter (PM_{2.5}) air pollution on children and women in Bishkek
- Assess entry points for action to reduce air pollution exposures

Objectives and Approach

- Examine the health and social impacts of fine particulate matter (PM_{2.5}) air pollution on children and women in Bishkek
- Assess entry points for action to reduce air pollution exposures

PM_{2.5} 12-month average ("annual"), July 2021-June 2022

- ~400% difference in outdoor concentrations across Bishkek
- Where you live/work/play matters!

Raw data from KyrgyzHydromet/ADB Clarity sensor network; validated, adjusted and analyzed by the UNICEF project team

PM_{2.5} Outdoor Concentrations Strongly Correlated with Residential Coal Use

(July 2021-June 2022; same pattern using winter average PM_{2.5})

Distribution of Outdoor PM_{2.5} at Residences

Combining PM_{2.5} spatial map (previous slide) and spatial (1km²) population data...

Using 2019 population data...

But people spend most of their time indoors...

outdoor $PM_{2.5}$ concentrations, $PM_{2.5}$ indoor/outdoor ratios, and time-activity data \rightarrow exposures

Mean Household Indoor/Outdoor (I/O) PM_{2.5} Ratios Similar for All Heating Types

	stove with pipes	stove without pipes	central heating	pipeline gas	ALL DATA	
Count	8	30	6	4	48	
Mean	0.47	0.55	0.42	0.55	0.52	
St. Dev.	0.17	0.23	0.11	0.37	0.22	

I/O ratio ~0.5 across all heating types...

Consistent with infiltration of neighborhood-scale outdoor PM

Winter Diel (time of day) Profiles

Across the city, best time to be outdoors is early- to mid-afternoon (in some areas, all hours are similar)

Part I Summary (Jay)

- Moderately dense low-cost sensor (LCS) network (~5km²/LCS)
 - Identified high PM_{2.5} spatial variability (factor of four) across Bishkek
 - Enabled PM_{2.5} exposure estimation at 1km² resolution
 - Determined influence of mountain-valley airflow on PM_{2.5}
- PM_{2.5} network and household survey
 - Highlighted residential coal stoves as the dominant source of wintertime PM_{2,5}
- Simultaneous Indoor/Outdoor Monitoring
 - Generated relationships needed for PM_{2.5} exposure modeling
 - Identified indoor PM_{2.5} dominated by infiltration of ambient air

Part I Summary (Jay)

- Key Messages
 - Large differences in PM_{2.5} exposures across the city
 - Interventions to reduce PM_{2.5} emissions must be at the neighborhood or larger scale to reduce household-level exposures
 - Absent (or in addition to) emissions reductions, there are household-level actions to reduce PM_{2.5} exposures (e.g. air purifiers)
 - Large spatial differences in PM_{2.5} time-of-day profiles; across the city PM_{2.5} air quality is best in the early- to mid-afternoon
- Part II (Rufus) propagates this work forward to the health and economic impacts analysis

For more information, contact Jay Turner, JRTURNER@WUSTL.EDU

