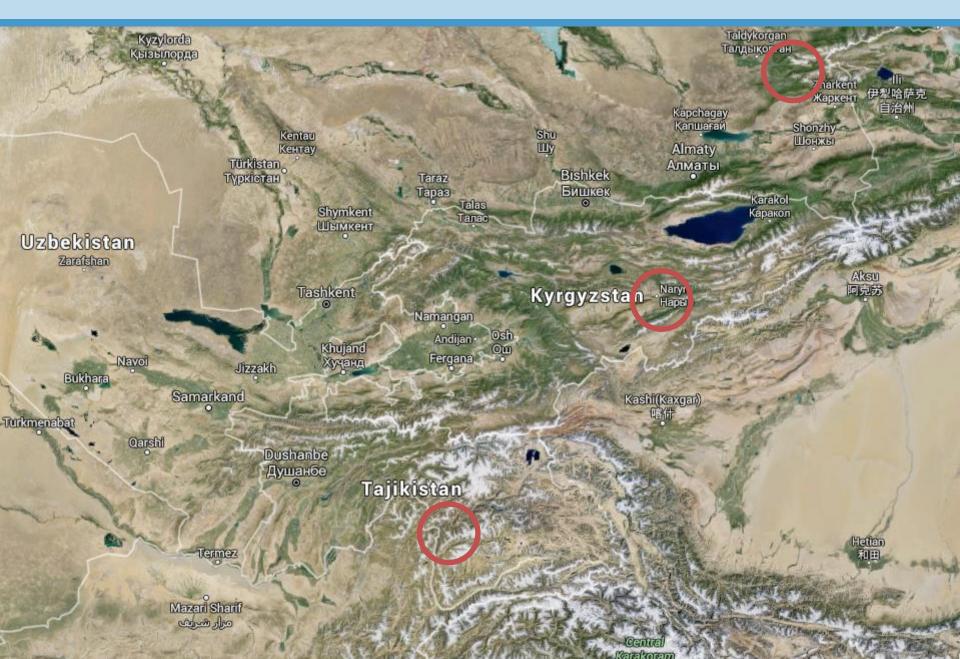
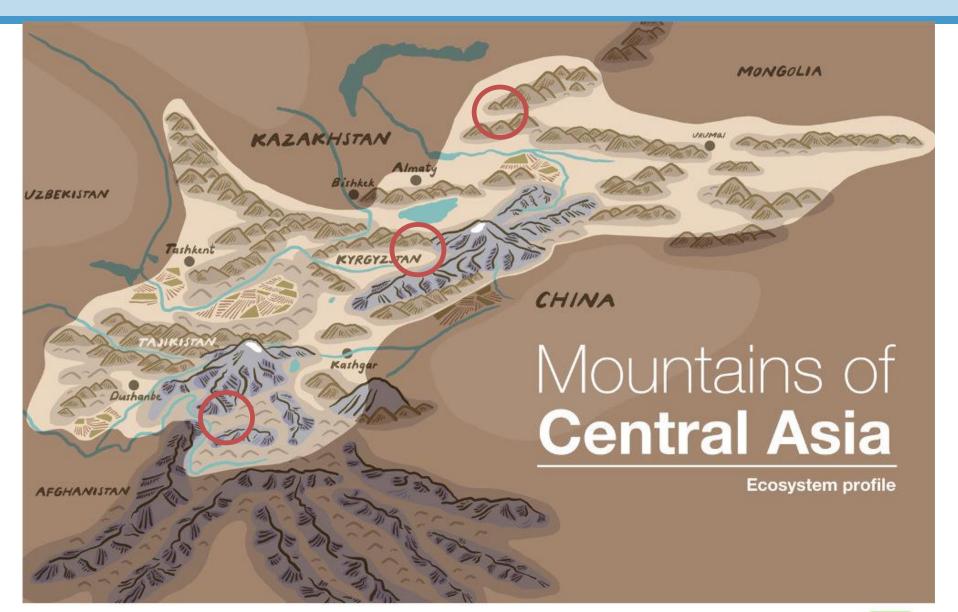
Merging Social-Ecological Research, Development Studies and Citizen Science in Central Asia



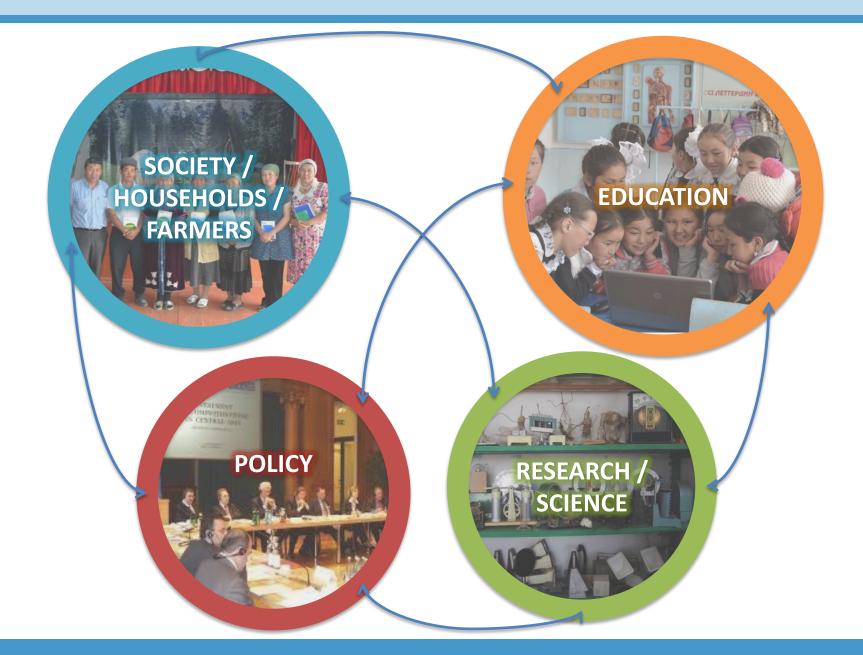
UNIVERSITY OF CENTRAL ASIA


GRADUATE SCHOOL OF DEVELOPMENT Mountain Societies Research Institute

> Bishkek, 13 October 2017 Aline Rosset & Azamat Azarov

Central Asia: at the convergence of mountain ranges

Globally important mountain ecosystems



CRITICAL ECOSYSTEM

UCA territory overlapping with global biodiversity hotspot

Learning Landscapes: Connecting education, science, society and policy

The SDGs and "wicked problems"

1 NO POVERTY

13 CLIMATE ACTION

Ň**ŧ**ŤŧŤ

simple

EASY TO SOLVE

A clear problem with a clear solution

Predictable Straightforward Obvious

complex

RESISTS SOLVING

 \geq The problem and the can be understood with time

Many familiar elements Hidden root courses Non-linear Inter-operating parts affect each other

anci

2 ZERO HUNGER

{{\}

8 DECENT WORK AND ECONOMIC GROWTH

14 LIFE BELOW WATER

3 GOOD HEALTH AND WELL-BEING

9 INDUSTRY, INNOVATION AND INFRASTRUCTURE

15 LIFE ON LAND

4 QUALITY EDUCATION

10 REDUCED INEQUALITIES

16 PEACE, JUSTICE AND STRONG


INSTITUTIONS

RESISTS DEFINING

 \geq Problem and solution not

- mai understood and keep
- shifting when we try to define them

- Ambiguous, chaotic Hany stakeholders with Conflicting perspectives Many elements are hidde Many elements are hidden and unknown No right/wrong solution Not-quantifiable
 - No precedents

5 GENDER EQUALITY

1 SUSTAINABLE CITIES AND COMMUNITIES

17 PARTNERSHIPS FOR THE GOALS

6 CLEAN WATER AND SANITATION

RESPONSIBLE CONSUMPTION AND PRODUCTIO

SUSTAINABLE DEVELOPMENT

- Loss of Biodiversity
 - Food Security
- Emerging diseases
- Population growth
- Poverty & Inequality
 - Access to water
 - Refugee crisis

Source: Rob Gibson 2013

To know about these we need to collect data...

... in large quantity ... over long periods of time ...over wide geographic areas and scales ...on a diversity of parameters ... using standardized methods ...allowing transdisciplinary analysis ...with public engagement ...that enables learning ... to be disseminated across broad stakeholder groups

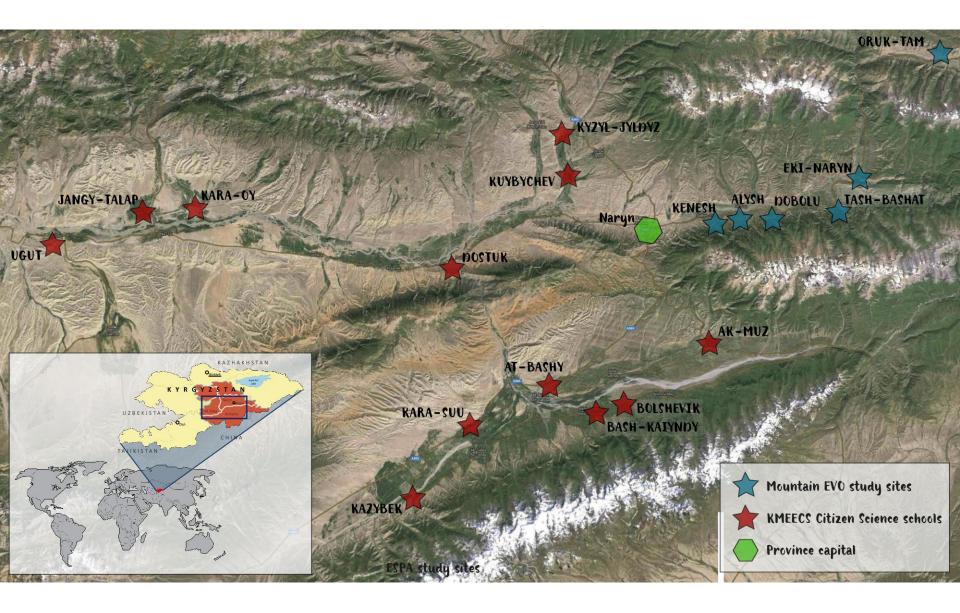
- Climate Change
- Loss of Biodiversity
 - Food Security
- Emerging diseases
- Population growth
- Poverty & Inequality
 - Access to water
 - Refugee crisis

"Scientific work (gathering, processing and distribution of knowledge) undertaken by members of the general public, often in collaboration with scientific institutions"

- ★ Rapid environmental changes all over the world
- ★ Lack of local environmental information on the local level
- ★ Importance of environmental knowledge of local inhabitants
- Students, farmers, teachers, and local governments get involved in research
- Combining citizen science with education and development projects offers many benefits

Citizen science projects at MSRI, UCA

★ Two research projects undertaken by the Mountain Societies Research Institute, UCA, have been utilizing Citizen Sciencebased approaches


"Mountain EVO" project (ESPA framework): Environmental data through community-based monitoring with weather stations, camera traps and mobile applications

"Kyrgyz Mountains Environmental Education and Citizen Science" project (KMEECS)

Watershed monitoring and mapping in schools, visualization and communication of results

Study area and context of Citizen Science projects

Study area and context of Citizen Science projects

- ★ High economic dependence on agriculture, particularly on livestock production
- ★ Agro-pastoral practices in late soviet and post-soviet times resulted in land degradation
- ★ Deterioration of infrastructure leads to inefficient management and use of natural resources (water, land, pastures)
- ★ Local-level data availability on social, environmental and economic situation in mountains decreasing and poorly shared
- ★ Low benefits from academic research on the local level
- * Access to innovative information and knowledge restricted
- Research and monitoring costly and difficult to conduct due to remoteness
- ★ Valuable **Traditional knowledge** systems in mountains

"Mountain EVO" project

ESPA framework

Environmental data – weather stations, cameratraps and mobile apps

Results of Mountain EVO project

- ★ Climatic data used for agricultural decision-making
- Collected data on wildlife, under-utilized non-timber forest products and occurrence of natural hazards are disseminated on information boards for locals to see.
- Several workshops and focus group discussions about 'participatory environmental data collection'
- Participatory research on informal institutions for water resources management
- Salkyntor National Park and Naryn State Nature Reserve and School teachers continue partnering with MSRI in the future

Results of Mountain EVO project

UNIVERSITY OF CENTRAL ASIA

JCA

GRADUATE SCHOOL OF DEVELOPMENT Mountain Societies Research Institute

2 Kyrgyz Mountains Environmental Education and Citizen Science project Water monitoring and watershed mapping

Goal: Pilot the introduction of Citizen Science-based Environmental Education activities and experiments in 10 rural schools of Kyrgyzstan's Naryn province.

- ★ Participatory development of resources for teachers (manual, experiments, toolboxes, mob. application) on water monitoring, trainings of teachers
- ★ Collect local-level **environmental data** through Citizen Science
- Visualize and disseminate information on local and national level through a travelling exhibition and eBook
- ★ Cooperation with local scientists from within the Kyrgyz Academy of Sciences, universities, and NGOs.
- ★ Analysis of the network of stakeholders involved in the project, their roles, resources and how they are impacted by the project activities and outcomes

Results of KMEECS project

- ★ Teachers and children from 12 rural schools were trained
- ★ Manual and methodology is being disseminated to 800 schools
- ★ Innovative channels for dissemination of results (interactive exhibition in different places, multimedia eBook, blogs)
- New projects combining citizen science and environmental education were started (phenology and climate as well as forest biodiversity)
- Core challenge: credibility of local children as scientists and low-cost equipment
- Main success: high valuation of the educational value of Citizen Science for practice-oriented school activities.

- ★ Decision support for moving to summer pastures based on weather station data
- ★ Demo-plots and trainings for experimenting with new crops
- ★ Localization of wild products and tourism destinations for naturebased income generation
- ★ Bottom-up policy dialogue in the villages on water-related challenges supported by Citizen Science and visualization
- ★ Enhanced capacities of teachers to link theoretical teaching with real-life phenomena in nature and discuss local environmental challenges in school

Lessons learnt and Conclusions

- ★ All citizens need a 'voice'
- ★ Each stakeholder needs to see his own benefit in the activities
- ★ Acceptance among scientists takes time AND good quality data
- ★ Communication of results to different audiences requires creativity to go beyond standard academic dissemination channels
- ★ Balance of outcomes (science vs. education, community interests vs. academia research interests etc.)
- ★ Complex challenges (e.g., climate change) need to be addressed in a participatory way, e.g. with CS, which engages a wide array of local stakeholders and fosters social learning processes
- ★ Long-term social and ecological monitoring is also critical. Future opportunities: "Learning Landscapes"

Thank you for your attention!

aline.rosset@ucentralasia.org azamat.azarov@ucentralasia.org www.ucentralasia.org