

The role of livestock in adapting to climate change, reducing GHG emissions and supporting food security in Kyrgyzstan

Félix Teillard, Anne Mottet, Alessandra Falcucci Animal Production and Health division, FAO

Pastures: a key natural resource

- Over 60% of the population lives in rural areas and depends on natural resources for their survival
- Pastures cover 40% of the country and 85% of agricultural lands

ESA CCI Land Cover

Pastures: a key natural resource

- Grass is the main feed resource for livestock
- Livestock supplies 22% of kilocalories and 41% of proteins

Total herd (million): cattle = 1.3, sheep = 4.1, goats = 0.9

FAO Gridded Livestock of the World

Pastures: a resource under pressure

62% of the soils are prone to light and moderate levels of degradation, **4%** are severely degraded

Pastures

29% degraded

25% deteriorating

Overgrazing can reduce plant cover by **40%** and rangeland productivity by **30%**

Degraded pastures can contain **60%** less humus and **40%** less soil organic carbon

Pastures: a resource under pressure

Underlying causes of pasture degradation

- Overgrazing livestock concentration and permanent grazing around villages and wells often exceeds the carrying capacity of pastures
- Under utilization grazing abandonment in remote areas results in a build-up of a soil crust, reduced water absorption and loss of valuable vegetation species
- Increased risk from climate change

Pastures: a resource under pressure

Climate change vulnerability and impacts

Objective

Identify improved livestock management practices and quantify their potential contribution to increase productivity, mitigate greenhouse gas emissions and adapt to climate change

The Global Livestock Environmental Assessment Model (GLEAM)

- Computes GHG emissions (CO₂, CH₄ et N₂O) using a Tier 2 methodology
- 6 main livestock species, main commodities
- Life Cycle Assessment modelling (cradle to retail), GIS based
- Global coverage, can generate averages at different scales
- Scenario analysis and quantification of intervention on GHG emission mitigation and productivity
- Developed at FAO, in collaboration with other partners
- Expanded to other environmental aspects (land use, nutrients, water, biodiversity)

Model overview

Herd parameters

Parameters	Cattle	Sheep	Goats
Fertility (%)	75	74.5	83.9
Mortality of young animals (%)	15	30	19.7
Mortality of adult animals (%)	7	14.1	9.3
Weight at birth (kg)	33	5.3	3
Slaughter live weight (kg)	530	27	35
Milk yield (kg/animal/year)	1992	90	33

Feed parameters (dairy animals)

Feed ration (%)	Cattle	Sheep	Goats
Gras & silage	40	46.5	46.5
Crop residues	34	39.3	39.3
Fodder beet	8	9.2	9.2
Grains	3.5	0	0
By-products	14.5	5	5

Total emissions from livestock

7016 gigagrams of CO₂-eq

Total emissions from livestock

Emissions by sources

- FEED: Fertilizer & crop residues, N₂O Emissions from fertilizers application and crop residues decomposition.
- 4 FEED: LUC soybean, CO₂ Emissions from the expansion of soybean for feed into natural areas.
- 7 FEED: Rice, CH₄ Emissions from rice cultivation used as feed.
- 10 MANURE MANAGEMENT, N₂O Emissions from manure management and storage.

- 2 FEED: Applied & deposited manure, N₂O Emissions from manure's application and animal deposition.
- 5 FEED: LUC palm kernel cake, CO₂ Emissions from the expansion of palm oil plantations into natural areas, as cakes are used for feed.
- 8 ENTERIC FERMENTATION, CH₄ Emissions from enteric fermentation from ruminant species and swine.
- 11 ENERGY USE: Direct energy, CO₂ Emissions from the use of energy on production site (ventilation, heating...)

3 FEED, CO2

Emissions from feed production, processing and transport of feed.

- 6 FEED: LUC pasture expansion, CO₂ Emissions from the expansion of pastures for grazing into natural areas.
- 9 MANURE MANAGEMENT, CH₄ Emissions from manure management and storage.
- 12 ENERGY USE: Embedded energy, CO₂ Emissions from the use of energy on the construction of facilities and equipment.

0%	10%	20%	30%		40%	50%	60%	7	70%	80%	90%	100%
	1 FEED N₂O fert.	2 FEED N₂O man	3 FEED CO2	4 FEED CO ₂ soy	5 FEED CO₂palm cake	6 FEED CO2 past.	7 FEED CH₄	8 ENTERIC CH₄	9 MANURE CH₄	10 MANURE N2O	11 ENERGY CO ₂ d.	12 ENERGY CO ₂ i.
Baseline	4.0%	5.1%	16.7%	2.2%	0.1%	0.0%	0.0%	63.5%	2.7%	4.2%	1.0%	0.4%
Scenario	4.0%	5.1%	16.7%	2.2%	0.1%	0.0%	0.0%	63.5%	2.7%	4.2%	1.0%	0.4%

Interventions for mitigation & productivity

Quantitative changes in parameters	Associated changes in practices
5% increase in fertility and decrease in mortality	 Veterinary practices (e.g. vaccination, deworming) Reproduction management (e.g. age at first mating)
+1-3% digestibility of forages in the feed ration	 Improved forage quality (e.g. legumes in pastures) Crop residues processing (e.g. urea, chopping)
+1-2% grain supplementation in the feed ration	• Use of grains (or concentrates) in the feed ration
+10-15% milk yield	Improved feeding practices (see above)Breeding

Interventions for mitigation & productivity

Effect on emission intensity

- Higher productivity
- Lower emissions per unit of product

Interventions for mitigation & productivity

Effect on total emissions

- +6.2% total emissions with the same herd size
- -7.3% total emissions with the same production

Grazing management & land restoration

Current livestock numbers could exceed the estimated land carrying capacity (up to **1.5 times?**)

Atadjanov et. al (2012)

Vegetation productivity

ESA Copernicus Land Service, SPOT-VGT and PROBA-V satellites

Cattle = 5, goats = 0.7 sheep eq.

Grazing management & land restoration

+19.0 tonnes C/ha in restored vs. degraded pastures?

Sequestration potential in degraded pastures: **153 Mt CO₂-eq.** (22 years of livestock emissions)?

Lal (2004)

Important uncertainty

- Rate of sequestration
- Time before reaching threshold
- Site-specific potential

Grazing management & land restoration

Improved grazing management for land restoration, pasture productivity and carbon sequestration

- Adapt the timing and intensity of grazing
- Rotational grazing
- Pasture improvement (e.g. fertilization, seeding)
- Feed supplementation in winter
- Veterinary practices
- Breeding management
- Return to transhumance

From quantification to action

- Preliminary results show an important potential to improve the contribution of livestock to productivity, climate change mitigation and adaptation in Kyrgyzstan
- The involvement of local stakeholders and experts is essential to validate the model, refine the quantification and identify the most relevant improvement practices
- Additional information and research is needed to reduce uncertainty in key areas (e.g. land degradation assessment, carbon sequestration potential)

From quantification to action

Improved livestock management require changes at sector and policy levels

- Rotational grazing can only be achieved through collective action
- Extension, veterinary services and breed management are needed to implement the options on animal husbandry, health, and feeding practices
- Specific policies would be required to support transhumance (e.g. targeting infrastructures, land tenure, conflict resolution, planning of water point provision, service delivery to mobile pastoralists)

From quantification to action

Opportunities for synergies with existing frameworks and projects

- FAO country programming framework, priority areas on strengthened conditions and resilience to climate change
- GEF project on participatory assessment of land degradation and sustainable land management in grasslands and pastoral systems
- FAO project on dairy cows
- GCF proposal on climate smart transformation of land use practice

GLEAM-i: interactive version

- Publicly available, userfriendly tool for calculating emissions using Tier 2 methods in a single Excel file at country level
- Designed to support governments, project planners and civil society organizations
- Can be used in the preparation of national inventories and in ex-ante evaluation of projects with interventions in livestock

Thank you

The GLEAM TEAM: Giuseppina Cinardi, Alessandra Falcucci, Juliana Lopes, Ruben Martinez-Rodriguez, Anne Mottet, Carolyn Opio, Monica Rulli, Giuseppe Tempio, Félix Teillard, Aimable Uwizeye